

SAW Components Data Sheet

CQTSR435M72.01

Customer' s Approval Certificate						
Complies with Directive 2002/95/EC (RoHS)						
Please return this Page Via email as a certification of Your approval						
Checked & Approval by: Date:						

Hangzhou Freq-control Electronics Technology Co.,Ltd. TEL:0086-571-85803723 FAX:0086-571-85803724 sales@csimc-freqcontrol.com

1. Package Dimension

2. Marking

C6055	(1) Model code
CHINA QUAR	(2) Date code

С	3
Month code	Last figure of year

Month	1	2	3	4	5	6	7	8	9	10	11	12
Month code	А	В	С	D	Е	F	G	н	I	J	К	L

3. Performance

3.1 Application

One-port SAW Resonator for Wireless Remote Controller.

Center frequency: 435.72MHz

3.2 Maximum Rating

Rating		Value	Unit
Operating Temperature Range	TA	-40 ~ +85	°C
Storage Temperature Range	<i>T</i> _{stg}	-45 ~ +85	°C
DC Voltage (between any Terminals)	V _{DC}	10	V
RF Power (in <i>BW</i>)	Р	10	dBm
ESD Voltage (HB)	V _{ESD}	150	V

Electrostatic Sensitive Device (ESD)

3.3 Electronic Characteristics

3.3 Electronic Characteristics				
Item	Unit	Minimum	Typical	Maximum
Center Frequency (fo)	MHz	435.645	435.72	435.795
Insertion Loss	dB	/_	1.3	2.0
Quality Factor	_	_	_	_
Unloaded Q		_	13,000	_
50Ω Loaded Q	0	87	1,900	_
Temperature Stability			—	—
Turnover Temperature	°C	10	25	40
Frequency Temperature Coefficient	ppm/°C ²	01000	0.032	_
Frequency Aging	ppm/yr	OLUGY	<±10	
DC Insulation Resistance	MΩ	1.0	—	—
RF Equivalent RLC Model	_	_	_	_
Motional Resistance R ₁	Ω		18	25
Motional Inductance L ₁	μH	_	86	
Motional Capacitance C ₁	fF	_	1.56	_
Shunt Static Capacitance C_0	pF	1.4	1.7	2.0

3.4 Test Circuit

4 Reliability

- 4.1 Mechanical Shock: The components shall remain within the electrical specifications after three one-half sine shock pulses(3000g's for 0.3 ms) in each direction(for six total) along each of the three mutually perpendicular axes for a total of 18 shocks.
- 4.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20~55Hz, amplitude 1.5mm, X,Y,Z, direction, for 2 hours.
- 4.3 Leak Test
- 4.3.1 Gross Leak Test: Submerge samples into at +85℃ water for at least 1 minute. Carefully observe the samples. No bubbles should be seen.
- 4.3.2 Fine Leak Test: Expose samples for testing to 60 PSIG Helium gas for 2 hours. Then transfer the same samples to another chamber and draw a vacuum. Measure the leak rate. Failure is defined if the leak rate exceeds 5×10^{-8} atm cc/sec Helium.
- 4.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the 85°C±2°Cfor 960 hours, then kept at room temperature for 2 hours.
- 4.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the 40°C±2°Cfor 960 hours, then kept at room temperature for 2 hours.
- 4.6 Temperature Cycle: The components shall remain within the electrical specification after 32 cycles of high and low temperature testing (one cycle: 80°C for 30 minutes → 25°C for 20 seconds → -40°C for 30 minutes) than kept at room temperature for 2 hours.
- 4.7 Humidity Test: The components shall remain within the electrical specifications after being kept at the condition of ambient temperature 70°C, and 90~95% RH for 240 hours, then kept at room temperature and normal humidity for 4 hours.
- 4.8 Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at 260°C±5°C for 10 to 11 seconds, then kept at room temperature for 10 minutes.
- 4.9 Solderability: Solderability of terminal shall be kept at more than 80% after dipped in the solder flux at 230℃±5℃ for 5±1 seconds.
- 4.10 Storage: The components shall meet the electrical and mechanical specifications after 5 years storage, if stored within the temperature range of -40°C~+85℃ and in the humidity of 20 to 60% r.h.