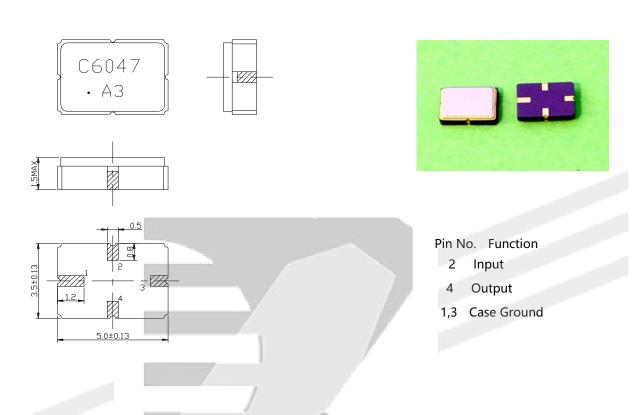


SAW Components Data Sheet CQTSR426M07.00

Customer' s Approval Certificate						
Complies with Directive 2002/95/EC (RoHS)						
Please return this Page Via email as a certification of Your approval						
Checked & Approval by:	Date:					


Hangzhou Freq-control Electronics Technology Co.,Ltd.
TEL:0086-571-85803723
FAX:0086-571-85803724

sales@csimc-freqcontrol.com

Version090729 - 1 -

1. Package Dimension

Unit: mm

2. Marking

C6047NA QUAR	Z TECHN (1) Model code
A3	(2) Date code

А	3
Month code	Last figure of year

Month	1	2	3	4	5	6	7	8	9	10	11	12
Month code	Α	В	С	D	E	F	G	Н	I	J	K	L

Version090729 - 2 -

3. Performance

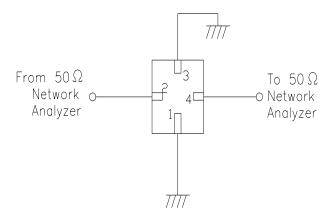
3.1 Application

One-port SAW Resonator for Wireless Remote Controller.

Center frequency: 426.0725MHz

3.2 Maximum Rating

Rating	Value	Unit	
Operating Temperature Range	T _A	-40 ~ +85	°C
Storage Temperature Range	\mathcal{T}_{stg}	-45 ~ +125	°C
DC Voltage (between any Terminals)	V_{DC}	10	V
RF Power (in <i>BW</i>)	Р	10	dBm
ESD Voltage (HB)	V_{ESD}	150	V


Electrostatic Sensitive Device (ESD)

3.3 Electronic Characteristics

Item	Unit	Minimum	Typical	Maximum
Center Frequency (fo)	MHz	425.9975	426.0725	426.1475
Insertion Loss	dB	/_	1.4	2.0
Quality Factor	_	_	_	_
Unloaded Q	- /	_	10,300	
50Ω Loaded Q	D.	AT.	1,700	_
Temperature Stability	W-11	<i>] </i> -	_	_
Turnover Temperature	℃	10	25	40
Frequency Temperature Coefficient	ppm/°C²	01.007	0.032	
Frequency Aging	ppm/yr	OLOG 1	<±10	
DC Insulation Resistance	ΜΩ	1.0	_	_
RF Equivalent RLC Model	_	_	_	
Motional Resistance R ₁	Ω	_	24	30
Motional Inductance L ₁	μН	_	92	
Motional Capacitance C ₁	fF	_	1.5	
Shunt Static Capacitance C ₀	pF	1.7	2.0	2.3

Version090729 - 3 -

3.4 Test Circuit

4 Reliability

- 4.1 Mechanical Shock: The components shall remain within the electrical specifications after three one-half sine shock pulses(3000g's for 0.3 ms) in each direction(for six total) along each of the three mutually perpendicular axes for a total of 18 shocks.
- 4.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20~55Hz, amplitude 1.5mm, X,Y,Z, direction, for 2 hours.
- 4.3 Leak Test
- 4.3.1 Gross Leak Test: Submerge samples into at +85°C water for at least 1 minute. Carefully observe the samples. No bubbles should be seen.
- 4.3.2 Fine Leak Test: Expose samples for testing to 60 PSIG Helium gas for 2 hours. Then transfer the same samples to another chamber and draw a vacuum. Measure the leak rate. Failure is defined if the leak rate exceeds 5×10^{-8} atm cc/sec Helium.
- 4.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the 85°C±2°Cfor 960 hours, then kept at room temperature for 2 hours.
- 4.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the $-40^{\circ}\text{C}\pm2^{\circ}\text{Cfor}$ 960 hours, then kept at room temperature for 2 hours.
- 4.6 Temperature Cycle: The components shall remain within the electrical specification after 32 cycles of high and low temperature testing (one cycle: 80°C for 30 minutes → 25°C for 20 seconds → -40°C for 30 minutes) than kept at room temperature for 2 hours.
- 4.7 Humidity Test: The components shall remain within the electrical specifications after being kept at the condition of ambient temperature 70°C, and 90~95% RH for 240 hours, then kept at room temperature and normal humidity for 4 hours.
- 4.8 Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at $260^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for 10 to 11 seconds, then kept at room temperature for 10 minutes.
- 4.9 Solderability: Solderability of terminal shall be kept at more than 80% after dipped in the solder flux at 230°C±5°C for 5±1 seconds.
- 4.10 Storage: The components shall meet the electrical and mechanical specifications after 5 years storage, if stored within the temperature range of -40°C~+85°C and in the humidity of 20 to 60% r.h.

Version090729 - 4 -