
SAW Components Data Sheet

CQTSR407M30.01

Customer's Approval Certificate						
Complies with Directive 2002/95/EC (RoHS)						
Please return this Page Via email as a certification of Your approval						
Checked & Approval by:	Date:					

Hangzhou Freq-control Electronics Technology Co.,Ltd. TEL:0086-571-85803723 FAX:0086-571-85803724 sales@csimc-freqcontrol.com

1. Package Dimension

2. Marking

C6037	(1) Model code
ÇHINA QUAR	(2) Date code

С	3
Month code	Last figure of year

Month	1	2	3	4	5	6	7	8	9	10	11	12
Month code	А	В	С	D	Е	F	G	Н	Ι	J	К	L

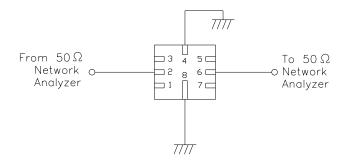
3. Performance

3.1 Application

One-port SAW Resonator for Wireless Remote Controller.

Center frequency: 407.3MHz

3.2 Maximum Rating


Rating			
T _A	-40 ~ +85	°C	
$T_{\rm stg}$	-45 ~ +85	°C	
$V_{\rm DC}$	10	V	
Р	10	dBm	
$V_{\rm ESD}$	150	V	
	T _{stg} V _{DC} P		

Electrostatic Sensitive Device (ESD)

3.3 Electronic Characteristics

Item	Unit	Minimum	Typical	Maximum
Center Frequency (fo)	MHz	407.225	407.30	407.375
Insertion Loss	dB	_	1.3	2.0
Quality Factor	_	_	_	_
Unloaded Q	-	_	14,000	_
50Ω Loaded Q	1-11	7-	1,500	_
Temperature Stability	vy	l_	_	_
Turnover Temperature	°C	_	39	—
Frequency Temperature Coefficient UARTZ	Tppm/°C ² O	LOGY	0.032	_
Frequency Aging	ppm/yr	_	<±10	
DC Insulation Resistance	MΩ	1.0	—	—
RF Equivalent RLC Model	_	_	_	—
Motional Resistance R ₁	Ω	_	12	22
Motional Inductance L ₁	μH	_	66	—
Motional Capacitance C ₁	fF	_	2.3	—
Shunt Static Capacitance C ₀	рF	1.4	1.7	2.0

3.4 Test Circuit

4 Reliability

- 4.1 Mechanical Shock: The components shall remain within the electrical specifications after three one-half sine shock pulses(3000g' s for 0.3 ms) in each direction(for six total) along each of the three mutually perpendicular axes for a total of 18 shocks.
- 4.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20~55Hz, amplitude 1.5mm, X,Y,Z, direction, for 2 hours.
- 4.3 Leak Test
- 4.3.1 Gross Leak Test: Submerge samples into at +85°C water for at least 1 minute. Carefully observe the samples. No bubbles should be seen.
- 4.3.2 Fine Leak Test: Expose samples for testing to 60 PSIG Helium gas for 2 hours. Then transfer the same samples to another chamber and draw a vacuum. Measure the leak rate. Failure is defined if the leak rate exceeds 5×10^{-8} atm cc/sec Helium.
- 4.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the 85°C±2°Cfor 960 hours, then kept at room temperature for 2 hours.
- 4.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the 40°C±2°Cfor 960 hours, then kept at room temperature for 2 hours.
- 4.6 Temperature Cycle: The components shall remain within the electrical specification after 32 cycles of high and low temperature testing (one cycle: 80°C for 30 minutes \rightarrow 25°C for 20 seconds \rightarrow -40°C for 30 minutes) than kept at room temperature for 2 hours.
- 4.7 Humidity Test: The components shall remain within the electrical specifications after being kept at the condition of ambient temperature 70°C, and 90~95% RH for 240 hours, then kept at room temperature and normal humidity for 4 hours.
- 4.8 Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at 260°C±5°C for 10 to 11 seconds, then kept at room temperature for 10 minutes.
- 4.9 Solderability: Solderability of terminal shall be kept at more than 80% after dipped in the solder flux at 230°C±5°C for 5±1 seconds.
- 4.10 Storage: The components shall meet the electrical and mechanical specifications after 5 years storage, if stored within the temperature range of -40°C~+85℃ and in the humidity of 20 to 60% r.h.